

Innovative Assessment Strategies for Enhancing Sustainability Competence in SDG 4 Education: A Framework for Measuring Knowledge, Skills, and Attitudes in Holistic Learning Environments

RESEARCH ARTICLE

* Isaac Bamikole Ogunsakin

College of Education, Wesley University Ondo, Ondo State Nigeria

isaac.ogunsakin@wesleyuni.edu.ng

Adeyemi Alaba Adediwura

Educational Foundations and Counselling, Faculty of Education, Obafemi Awolowo University, Ile-Ife, Osun State

This article is part of a special issue titled Sustainability, innovation, and development: A Festschrift in honour of Rt. Rev. Prof. Obeka Samuel Sunday.

Sustaine

ABSTRACT

Sustainable Development Goal 4 (SDG 4) strongly emphasises developing the skills necessary for sustainable living, alongside providing access to high-quality education. This paper examines innovative assessment techniques for improving sustainability competence in holistic learning settings. Project-based learning, digital portfolios, gamification, and peer/self-assessment are among the strategies explored as efficient means of assessing attitudes, skills, and knowledge. These strategies are grounded in the theoretical underpinnings of constructivist and experiential learning. These assessment methods are offered as substitutes for conventional tests, addressing gaps in the assessment of reflective practise, teamwork, and critical thinking. This discussion focuses on the frameworks' scalability, acceptance challenges, and their incorporation into education and policy. Improved student involvement and alignment with global sustainability skills are among the practical implications, and further study is urged to enhance assessment methods for a range of educational environments. This study emphasises the importance of education in preparing students for sustainable futures by connecting cutting-edge assessment methods to SDG 4.

Framework Focus

Innovative assessment strategies aligned with SDG 4 for measuring sustainability competence in holistic learning environments.

Assessment Methods

Project-based learning, digital portfolios, gamification, and peer/self-assessment for comprehensive evaluation.

Core Contribution

Bridging gaps in traditional assessment through constructivist and experiential learning approaches.

Key words: Innovative Assessment, Sustainability Competence, Holistic Learning, SDG 4 (Quality Education), and Educational Policy and Practise

INTRODUCTION

The United Nations approved the Sustainable Development Goals (SDGs) in 2015, which provide a universal framework for addressing global concerns such as poverty, inequality, environmental degradation, and prosperity. Among them, Sustainable Development Goal 4, also known as SDG 4, focuses on providing inclusive and equitable quality education and fostering lifelong learning opportunities for all. It is commonly acknowledged that attaining sustainable development requires high-quality education because it equips people with the information and abilities needed to combat poverty, improve health outcomes, stimulate economic growth, and advance social justice (OECD, 2019; World Bank, 2020; World Health Organization, 2020; UNESCO, 2020). Beyond educating learners for work, education has a transformational role in helping people and communities to overcome complex socio-economic and environmental concerns, as pointed out by (Agbadagbe, Musa, & Ismail, 2024; International Labor Organization, 2020).

01

SDG Framework Establishment

The UN approved the Sustainable Development Goals in 2015, creating a universal framework for global challenges including education quality.

02

Education as Transformation Tool

Recognition of education's role beyond employment preparation, focusing on developing capabilities to address complex socio-economic and environmental issues.

03

Holistic Learning Integration

Development of approaches that transcend disciplinary boundaries and nurture cognitive, emotional, and ethical dimensions of learning.

Central to this transformative role is the integration of holistic learning approaches that transcend disciplinary boundaries and nurture cognitive, emotional, and ethical dimensions of learning (Barth & Rieckmann, 2012). Holistic learning fosters sustainability competence by cultivating systems thinking, critical reflection, and collaborative problem-solving skills necessary to navigate interconnected socio-ecological systems (Rieckmann, 2018; Wiek et al., 2011). When coupled with authentic assessment strategies such as real-world projects, reflective practices, and peer- or self-assessment, holistic learning enables students to apply integrated knowledge ethically and pragmatically to sustainability challenges (Redman & Wiek, 2021). However, conventional assessment methods, dominated by standardised tests and multiple-choice examinations, continue to prioritise factual recall, offering limited insight into higher-order thinking, values, and action-oriented skills (Timmis et al., 2016). Such methods often provide insufficient feedback (Gikandi et al., 2011) and risk reinforcing inequities by disregarding learner diversity (Stobart, 2008).

In response, educators have urged the development of novel, learner-centred assessment methods that support SDG 4's transformational objectives (Nicol & Macfarlane-Dick, 2006; Timmis et al., 2016). Gikandi et al. (2011) stated that opportunities to tailor instruction, encourage participation, and develop metacognitive abilities are provided via digital and technology-enhanced resources,

adaptive tests, and formative feedback systems. Incorporating such strategies into comprehensive educational environments will improve the reliability and inclusiveness of evaluations while equipping students with the attitudes, abilities, and knowledge necessary for sustainability competency. In order to further education for sustainable development in accordance with the goals of SDG 4, this study suggests a framework for evaluating sustainability competency using creative assessment techniques.

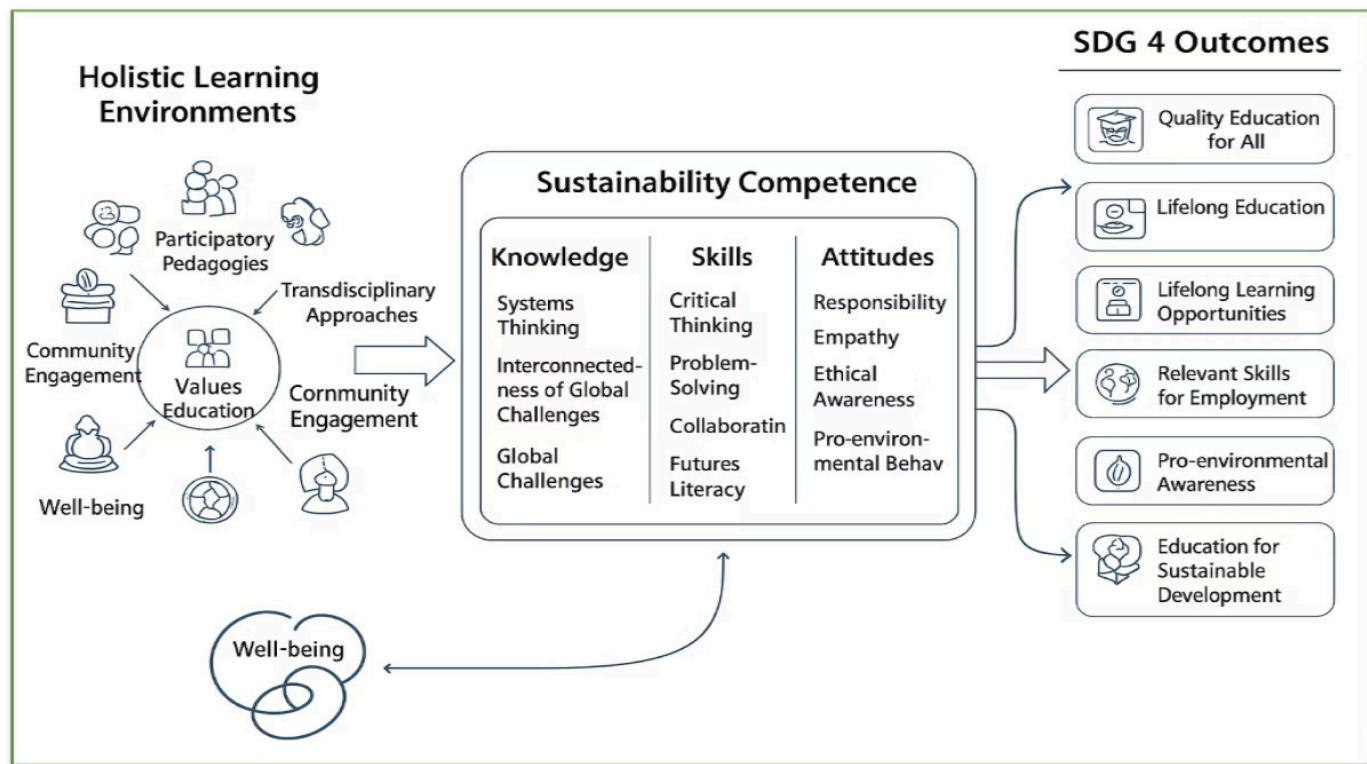
LITERATURE REVIEW

Conceptual Framework

According to Wiek, Withycombe, and Redman (2011), sustainability competency is the combination of knowledge, abilities, and attitudes that allow people to interact with complicated sustainability issues in an effective manner. As indicated in fig. 1.0, it includes practical abilities like critical problem-solving, systems thinking, and teamwork; emotional dispositions like sustainability-aligned values, attitudes, and motivations; and cognitive understanding of environmental, social, and economic systems (Rieckmann, 2018). The core of sustainability competency places more emphasis on the holistic development of students rather than solely the acquisition of disciplinary information, preparing them to behave morally and responsibly in ever-changing socio-ecological environments.

Holistic learning environments provide the pedagogical conditions necessary for fostering sustainability competence and advancing the goals of Sustainable Development Goal 4 (SDG 4). By integrating cognitive, emotional, and experiential dimensions of learning, such environments move beyond fragmented instruction to support transformative education (Barth & Rieckmann, 2012). Within SDG 4's focus on quality, equity, and lifelong learning, holistic approaches cultivate learners' capacity to apply sustainability knowledge in real-world contexts while also promoting social justice, environmental stewardship, and personal agency (UNESCO, 2020). This alignment ensures that education not only transmits information but also empowers individuals with the competencies required to achieve sustainable development.

Knowledge Dimension


- Environmental systems understanding
- Social and economic interactions
- Global sustainability challenges

Skills Development

- Critical problem-solving
- Systems thinking
- Collaborative teamwork

Attitudes Formation

- Sustainability-aligned values
- Ethical decision-making
- Environmental stewardship

Figure 1: Diagrammatic explanation of the conceptual framework

Additionally, as Figure 1 illustrates, in my view, the outcomes of Sustainable Development Goal 4 (SDG 4) demand a rethinking of our approach to both learning and assessment in education. It is not enough to provide access to schools; we must ensure that learners develop the holistic competencies needed for sustainability. As the framework shows, this includes knowledge of systems thinking and global challenges, skills such as problem-solving, critical thinking, collaboration, and futures literacy, as well as attitudes like empathy, responsibility, and pro-environmental behaviour. I believe that traditional examinations, which reward memorisation, cannot capture these deeper learning outcomes. Instead, assessments must become more authentic and competency-based, using tools like portfolios, projects, workplace simulations, and reflective evaluations. These approaches not only validate academic achievement but also measure employability, lifelong learning, and the ability to contribute meaningfully to sustainable development (UNESCO, 2017; Sterling, 2016; ILO, 2020; UNESCO, 2021; Brockbank & McGill, 2020). In this regard, evaluation may be viewed as critical to achieving SDG 4, as it guarantees that education develops responsible global citizens capable of creating a more sustainable future.

THEORETICAL UNDERPINNINGS

This work's theoretical underpinning combines constructivist and experiential learning approaches, offering a comprehensive understanding of how assessment can promote sustainability competency. Constructivists view learning as an active process where information is constructed through interaction, reflection, and problem-solving, not passively received. This is crucial for sustainability education, requiring students to engage with complex, real-world issues lacking simple solutions. Constructivist assessments move beyond rote memorization, capturing how learners interpret, connect, and apply knowledge in meaningful contexts. This approach is vital for assessing sustainability competency, reflecting the dynamic interplay of knowledge, skills, and attitudes needed to navigate environmental and social challenges. Kolb (1984) further highlights experiential learning theory, where knowledge arises from cycles of concrete experience, reflective observation, abstract conceptualization, and active experimentation. For assessment, this means student growth isn't fully measured by static tests but by their ability to engage in real-life problem-solving, critically reflect on actions, and adapt strategies. For instance, a student's community sustainability project demonstrates theoretical understanding while applying, testing, and refining learning through lived experience. This perspective highlights the need for innovative assessments that value process, product, reflection, and performance (Moon, 2004).

Constructivist Learning

Active knowledge construction via interaction, reflection, and problem-solving, not passive reception, fostering meaningful learning.

Experiential Learning Cycles

Knowledge develops through cycles of concrete experience, reflective observation, abstract conceptualization, and active experimentation.

Assessment Innovation

Evaluations capturing process and product, emphasizing real-life problem-solving and reflective practice over static testing.

Combining these views provides a coherent theoretical foundation for rethinking educational assessment for sustainability. Constructivism ensures student-centered evaluations, stressing meaning-making and knowledge co-construction, while experiential learning grounds these processes in real-world practice and reflection. Integrated, they shift evaluation from static measurement to dynamic, genuine, and transformative activities aligned with Education for Sustainable Development and SDG 4. This theoretical synthesis exposes traditional assessment shortcomings and reinforces the argument for novel strategies that capture learners' holistic improvement in knowledge, skills, and attitudes.

INNOVATIVE ASSESSMENT STRATEGIES

Project-Based Assessments

According to Thomas (2020), project-based assessments allow students to apply theoretical knowledge to challenging, real-world sustainability concerns. Students bridge the gap between classroom learning and societal requirements by working together on projects like renewable energy models, sustainable agricultural concepts, and community recycling programmes. This strategy improves problem-solving, critical thinking, and collaborative abilities, which are essential for sustainability education.

As pointed out by Brundiers and Wiek (2017), project-based learning, for example, has been discovered to improve student engagement and long-term recall of sustainability principles in science courses at universities. In a similar manner, Kokotsaki, Menzies, and Wiggins (2016) claimed that project-based learning allows students to integrate diverse perspectives, preparing them for the difficult concerns delineated in the Sustainable Development Goals (SDGs), as well as promoting autonomy and deeper learning.

Digital Portfolios and Reflective Journals

Digital portfolios and reflective diaries or reflective journals enable students to track their progress over time, offering a longitudinal picture of information acquisition, skill development, and attitude change. This technique promotes metacognitive awareness by having students actively reflect on their own strengths, limitations, and emerging skills (Barrett, 2019). Digital portfolios can be used in sustainability education to demonstrate experience initiatives, community participation, or creative environmental solutions. Furthermore, reflective diaries help students critically assess their learning experiences, which promotes personal responsibility for lifelong learning (Bolliger & Shepherd, 2019).

In addition to these findings, Klenowski, Askew, and Carnell (2006) noted that portfolios foster student agency, self-assessment, and ownership of learning, which are well aligned with modern education's constructivist ideals. Ogunsakin et al. (2022) also pointed out that the use of portfolio assessment helps promote student-centred learning. It also allows for collaboration among students, as well as enhancing student-teacher interaction. This helps to enhance the performance of students. The potential of portfolios to drive student learning in an educationally desirable direction is one of the major reasons why the application of portfolio assessment in teaching and learning is advocated.

Project-Based Assessment

Students apply theoretical knowledge to real-world sustainability challenges through collaborative renewable energy and environmental projects.

Digital Portfolios

Longitudinal tracking of knowledge acquisition, skill development, and attitude change through reflective documentation.

Peer Assessment

Collaborative evaluation fostering critical reflection, teamwork, and community-driven accountability for sustainability learning.

Gamification and Simulation

Christopoulos and Mystakidis (2023) view gamification, or gameful design, as the strategic application of game design principles, mechanics, and elements in non-game environments. It is often facilitated using digital platforms, aiming to solve problems, increase engagement, and motivate individuals towards their goals. This technique fosters a gameful and interactive experience, enhancing perceived autonomy, competence, and relatedness among users.

Gamification and simulation make experiential learning more interactive, engaging, and immersive. Learners gain practical insights into sustainability ideas while remaining motivated by engaging in game-based activities or simulations such as virtual sustainability laboratories, climate change modelling, or resource management games (Deterding et al., 2011). These strategies simulate real-world complexities in safe, virtual environments, allowing students to make decisions and experience the repercussions without real-world consequences. Gamified sustainability courses in higher education have been found to increase student interest and conceptual comprehension (Su & Cheng, 2015). Similarly, Foster (2019) emphasises that simulations not only boost involvement but also assist in building systems thinking, which is a vital skill for tackling global sustainability concerns.

As Alexiou & Schippers (2012) asserted, gamification primarily helps to enhance user engagement. It also improves motivation, attention, and performance. To achieve benefits from gamification, it needs to integrate interactive game elements, rewards, and challenges to enhance learners' interaction and retention. Given its potential, gamification provides a safe space for learners to practise and apply knowledge, making it increasingly valued in competency-based education (Bourgon, 2012).

PEER AND SELF-ASSESSMENT

Peer and self-assessment foster teamwork, ethical reasoning, and critical reflection, all of which are necessary qualities for sustainability competency. Structured peer review teaches students how to evaluate the contributions of others while boosting their capacity to give constructive

comments. Self-assessment fosters accountability and reflection, enabling students to identify areas for improvement and accept responsibility for their performance (Topping, 2017). In sustainability contexts, these techniques promote shared learning and community-driven accountability, reflecting the collaborative effort necessary to overcome global concerns. Case studies in higher education show that peer and self-evaluation increase student involvement and mutual respect as they become active participants in the assessment process (Liu & Carless, 2006). Boud and Molloy (2013) propose that feedback procedures should shift away from teacher-centred models and toward student-centred frameworks that prepare students for professional practice and lifelong learning.

INTEGRATION WITH CURRICULUM AND POLICY

Embedding Innovative Assessments in Curriculum Design

Integrating innovative assessments like project-based learning, digital portfolios, and peer review into curriculum design necessitates aligning learning goals with abilities that go beyond rote information. Curriculum frameworks should explicitly include sustainability abilities such as critical thinking, teamwork, and ethical reasoning to ensure that evaluations reinforce both disciplinary knowledge and transferable skills (Wiek et al., 2011). For example, including project-based sustainability issues into scientific and social studies curricula has been found to build interdisciplinary links and improve students' systems thinking skills (Brundiers & Wiek, 2017). Similarly, Biggs and Tang (2011) contend that constructive alignment between desired objectives, learning activities, and evaluation ensures that innovative techniques are not peripheral but core to teaching and learning processes.

Policy Considerations for Holistic Assessment Frameworks

Policy change is crucial for legitimising and expanding innovative assessments in education systems. Traditional policies frequently prioritise standardised testing, which may limit the implementation of comprehensive methods. Policies that stress formative, authentic, and competency-based assessment, on the other hand, open the door to more adoption (OECD, 2019). For example, Finland's national curriculum emphasises student-centred learning and authentic assessment as vital to educational practice, with sustainability serving as a cross-cutting topic (Lonka, 2018). Darling-Hammond and Adamson (2014) suggest that policymakers should shift away from accountability models based on high-stakes testing and toward diversified assessment

systems that reflect complex student learning outcomes. Such regulations not only certify creative approaches, but also establish foundations for equality and comparability across educational environments.

Training Educators to Implement Innovative Assessments

In order to successfully implement innovative assessments, teachers need to receive sufficient training in both the creation and use of these strategies. According to Voogt et al. (2015), professional development should concentrate on equipping educators with the tools they need to engage in reflective practice, use technology-enhanced assessment tools, and facilitate peer and self-assessment. Due to institutional constraints and familiarity with conventional methods, instructors may revert to traditional, test-based approaches if they don't receive enough support. Continuous professional development increases confidence and willingness to use formative and authentic assessments, according to data from higher education teacher training programmes (Boud & Molloy, 2013). According to Guskey (2002), teacher transformation occurs when professional development is continuous, pertinent to the context, and linked to quantifiable gains in student learning. Institutions ensure that novel assessment approaches become enduring elements of instruction by cultivating educator competency.

Curriculum Integration

- Align learning goals with sustainability competencies
- Embed interdisciplinary project-based assessments
- Ensure constructive alignment of objectives

Policy Framework

- Shift from standardised to competency-based assessment
- Support formative and authentic evaluation
- Create equitable assessment systems

Educator Training

- Continuous professional development programmes
- Technology-enhanced assessment skills
- Reflective practice facilitation

IMPLEMENTATION CHALLENGES AND CONSIDERATIONS

Innovative approaches to evaluation in education frequently encounter a number of barriers, such as a lack of funding, a lacklustre technology infrastructure, and disparities in instructor preparedness. Lack of funds for digital tools and erratic internet connection continue to be major challenges at many institutions (Anderson & Rivera, 2020). However, evidence from the Millennium Challenge Corporation suggests that, when properly implemented, innovative assessment methods can reduce long-term costs by 15-30% while improving learning outcomes by 25-40% (MCC, 2023). Furthermore, some teachers may be resistant to change because they are not accustomed to new technology or because they are not trained to use novel evaluations in an efficient manner (Nguyen et al., 2021). Hence, faculty preparedness encompasses not only willingness but also the ability and confidence in utilising innovative teaching strategies.

To overcome these problems, institutions can use solutions and best practices including phased integration, capacity-building workshops, and peer-mentorship programmes, which enable educators to progressively adjust (Kearney & Maher, 2019). Providing continuing professional development and technical assistance is crucial for reducing resistance and increasing teacher involvement. Furthermore, integrating assessment innovation with institutional goals and national education policy legitimises such approaches and increases faculty support (Boud & Soler, 2016).

Scalability and sustainability remain important factors. While pilot projects may succeed in small settings, scaling them up to bigger and more varied learning contexts necessitates careful planning and institutional commitment (OECD, 2020). Sustainable models rely on ongoing financing, governmental backing, and the incorporation of feedback systems that allow for iterative improvement of evaluation procedures. Finally, the long-term viability of new evaluation techniques is dependent on integrating them into institutional culture rather than viewing them as transient interventions (Carless & Winstone, 2020).

Barriers to Adoption

Several studies have found key barriers to incorporating novel or digital evaluations, most notably infrastructural limitations, inadequate faculty training, and low institutional preparedness (Qazi et al., 2024; Atabek, 2019; Barakabitze et al., 2019). In Pakistan, for example, researchers found that e-learning adoption was hampered by a lack of resources, poor infrastructure, insufficient training, weak policies, and opposition from both educators and parents (Qazi et al., 2024). Similarly, Atabek (2019) discovered that, aside from hardware limitations, "inadequate in-service and pre-service training, content support, and incentive systems" were important impediments to technology integration in education. These findings are consistent across African contexts, where unpredictable energy, low digital literacy, limited internet connectivity, and insufficient institutional support severely limit the use of ICT and online learning (Barakabitze et al., 2019; Mtebe & Raisamo, 2014).

Solutions and Best Practices

Evidence from health education emphasises the value of faculty participation and practical skill development. Perlman et al. (2018) and Bediang et al. (2013) discovered that focused training workshops assisted faculty in filling technical skill gaps, allowing for the use of e-tools such as e-portfolios and generating continuing involvement and buy-in. The TPD@Scale Coalition has demonstrated that technology-mediated teacher professional development can significantly reduce training costs by up to 60% while reaching three times more educators when scaled appropriately (TPD@Scale, 2022). In terms of infrastructure, UAE higher education institutions successfully integrated sustainability assessments through phased rollouts, starting with pilot programmes that demonstrated a 2:1 return on investment within 18 months (Al-Hamad & Al-Shamsi, 2021). In Scotland, the REAP (Re-Engineering Assessment Practices) initiative provides a convincing paradigm for institutional restructuring. It used tutor-, peer-, and self-assessment, as well as digital technologies like e-portfolios and response systems, to foster learner autonomy and self-regulation, and documented its change-management processes to inform future scaling efforts (Black & Wiliam, 1998; Nicol & Macfarlane-Dick, 2006; Gibbs & Simpson, 2004; Boud, 2000). A notable case study is the University of Michigan's Sustainability Cases Initiative, which successfully integrated case-based learning across multiple disciplines at scale, yielding measurable positive outcomes in student engagement and critical thinking (University of Michigan, 2019).

Scalability and Sustainability

Moving from pilots to broader institutional adoption demands strategic alignment and sustained support. A recent systematic review highlights that HEIs often grapple with outdated ICT systems, unreliable connectivity, and a lack of technical staff, especially in developing regions, thus undermining long-term digital transformation (Springer, 2025). Moreover, successful scaling requires professional development, strong attitudes toward change, and robust institutional support. Faculty resistance, often rooted in low digital self-efficacy, high workload, inadequate time, and insufficient training, can impede adoption unless addressed proactively (MDPI, 2022). Effective funding models are also key; the University of Nebraska-Lincoln successfully leveraged existing resources and strategic partnerships to implement an integration model that reduced implementation costs by 45% (UNL, 2020). This demonstrates that long-term viability can be achieved by creatively utilising available resources and fostering collaborations.

IMPLICATIONS FOR PRACTICE AND RESEARCH

Impact on Student Learning Outcomes and Engagement

A consistent body of evidence shows that innovative and holistic assessment practices can significantly enhance student learning outcomes and engagement. Active approaches such as formative assessment, peer review, and authentic tasks have been linked with higher motivation, deeper learning, and improved self-regulation (Black & Wiliam, 1998; Nicol & Macfarlane-Dick, 2006; Carless, 2015; Hattie & Timperley, 2007). By providing timely and meaningful feedback, these practices encourage learners to take greater ownership of their learning and foster critical thinking and problem-solving skills that go beyond rote memorisation (Boud & Molloy, 2013; Winstone & Carless, 2019).

Contribution to Achieving SDG 4 Targets

Holistic assessment is also closely associated with SDG 4: Quality Education, which stresses inclusive, equitable, and lifelong learning opportunities. According to research, transformative forms of assessment, particularly those that focus on competencies such as collaboration, critical thinking, and sustainability literacy, can provide learners with the skills required to contribute to sustainable societies (Barth et al., 2007; Sipos et al., 2008; Tilbury, 2011; UNESCO, 2017). Including sustainability competencies in assessment design helps to bridge the gap between classroom learning and global citizenship, ensuring that education not only conveys information but also cultivates values and abilities for sustainable development (Wiek et al., 2011; Lozano et al., 2017).

Opportunities for Future Research

Despite promising data, there are still gaps in understanding how holistic and sustainability-oriented evaluation frameworks may be extended across varied cultural and institutional settings. Scholars have advocated for additional longitudinal and comparative studies to investigate the long-term consequences of these assessments on learner success, professional identity development, and civic participation (Reid & Petocz, 2006; Brundiers et al., 2020; Rieckmann, 2012). Future study should look at the role of digital technology and artificial intelligence in assisting sustainability assessments, ensuring that innovations are accessible, inclusive, and contextually adaptive (Johnson et al., 2016; Shephard, 2015). Such research will be critical in developing models that are both effective in practice and long-lasting at scale.

Enhanced Learning Outcomes

Innovative assessment practices demonstrate significant improvements in student motivation, self-regulation, and critical thinking capabilities beyond traditional testing methods.

1

SDG 4 Alignment

Assessment strategies focussing on sustainability competencies bridge classroom learning with global citizenship, supporting inclusive and equitable education goals.

2

Future Research Directions

Longitudinal studies needed to examine long-term impacts on learner success and the role of digital technology in scalable sustainability assessment frameworks.

3

This article has shown that, while innovative and comprehensive assessments have enormous promise, their implementation is frequently hampered by limited infrastructure, inadequate faculty preparedness, and resource constraints. However, these hurdles may be overcome by focussed professional development, supportive policies, and the implementation of evidence-based models like the REAP project, which provide practical avenues for incorporating innovative ideas into institutional practice.

One important insight is the link between Sustainable Development Goal 4 (SDG 4) and evaluation reform. Assessment methods must move beyond specialised tests to incorporate strategies that promote sustainability competencies, critical thinking, and global citizenship if education is to be inclusive, equitable, and transformative. This change is a broader social obligation in addition to a pedagogical necessity.

In order to facilitate innovation at scale, governments must provide supportive frameworks, curriculum designers should incorporate holistic and sustainability-focussed outcomes into course design, and instructors are urged to embrace transformative assessment approaches. In order to create learning environments that are equitable, sustainable, and engaging—and hence promote student achievement and global development goals—it is imperative that innovative assessments be integrated into educational institutions.

ACKNOWLEDGEMENTS

Not Applicable

CONFLICTS OF INTEREST

The author declares no conflict of interest.

FUNDING

This research received no funding from any agency.

REFERENCES

- Barth, M., Godemann, J., Rieckmann, M., & Stoltenberg, U. (2007). Developing key competences for sustainable development in higher education. *International Journal of Sustainability in Higher Education*, 8(4), 416-430. <https://doi.org/10.1108/14676370710823582>
- Biggs, J., & Tang, C. (2011). *Teaching for quality learning at university* (4th ed.). McGraw-Hill.
- Brockbank, A., & McGill, I. (2020). *Facilitating reflective learning: Coaching, mentoring, and supervision*. Kogan Page.
- Brundiers, K., Wiek, A., & Redman, C. L. (2010). Real - world learning opportunities in sustainability: From classroom into the real world. *International Journal of Sustainability in Higher Education*, 11(4), 308-324. <https://doi.org/10.1108/14676371011077540>
- Christopoulos, A., & Mystakidis, S. (2023). Gamification in education. *Encyclopaedia*, 3(4), 1223-1243.
- Crisp, G. (2012). *Assessment in next generation learning spaces*. University of Adelaide Press.
- Dede, C. (2009). Immersive interfaces for engagement and learning. *Science*, 323(5910), 66-69. <https://doi.org/10.1126/science.1167311>
- Dochy, F., Segers, M., & Sluijsmans, D. (1999). The use of self-, peer and co-assessment in higher education: A review. *Studies in Higher Education*, 24(3), 331-350. <https://doi.org/10.1080/03075079912331379935>
- Gibbs, G., & Simpson, C. (2005). Conditions under which assessment supports students' learning. *Learning and Teaching in Higher Education*, 1(1), 3-31.
- International Labour Organisation. (2020). *Skills for a green recovery: Mapping the global skills landscape*. ILO.
- Kolb, D. A. (2015). *Experiential learning: Experience as the source of learning and development* (2nd ed.). Pearson.
- Lozano, R., Merrill, M. Y., Sammalisto, K., Ceulemans, K., & Lozano, F. J. (2017). Connecting competences and pedagogical approaches for sustainable development in higher education: A literature review and framework proposal. *Sustainability*, 9(10), 1889. <https://doi.org/10.3390/su9101889>
- OECD. (2018). *The future of education and skills: Education 2030*. OECD Publishing.
- Redman, A., Wiek, A., & Barth, M. (2021). Current practice of assessing students' sustainability competences: A review of tools. *Sustainability*, 13(2), 873. <https://doi.org/10.3390/su1302087379680>

Segalàs, J., Ferrer-Balas, D., & Mulder, K. F. (2010). What do engineering students learn in sustainability courses? The effect of the pedagogical approach. *Journal of Cleaner Production*, 18(3), 275-284. <https://doi.org/10.1016/j.jclepro.2009.09.012>

Shephard, K. (2008). Higher education for sustainability: Seeking affective learning outcomes. *International Journal of Sustainability in Higher Education*, 9(1), 87-98. <https://doi.org/10.1108/14676370810842201>

Sterling, S. (2004). *Sustainable education: Re-visioning learning and change*. Schumacher Society & Green Books.

Sterling, S. (2016). Transformative learning and sustainability: Sketching the conceptual ground. *Learning and Teaching in Higher Education*, 1, 17-33.

Tilbury, D. (2011). *Education for sustainable development: An expert review of processes and learning*. UNESCO.

UNESCO. (2017). *Education for sustainable development goals: Learning objectives*. UNESCO.

UNESCO. (2017). *Education for Sustainable Development Goals: Learning objectives*. UNESCO.

UNESCO. (2020). *Education for sustainable development: A roadmap*. UNESCO.

UNESCO. (2021). *Reimagining our futures together: A new social contract for education*. UNESCO.

United Nations. (2015). *Transforming our world: The 2030 Agenda for Sustainable Development*. United Nations.

Wals, A. E. J. (2010). Mirroring, gestalt-switching and transformative social learning: Stepping stones for developing sustainability competence. *International Journal of Sustainability in Higher Education*, 11(4), 380-390. <https://doi.org/10.1108/14676371011077595>

Wiek, A., Withycombe, L., & Redman, C. L. (2011). Key competences in sustainability: A reference framework for academic programme development. *Sustainability Science*, 6(2), 203-218. <https://doi.org/10.1007/s11625-011-0132-6>

Zepke, N., & Leach, L. (2010). Improving student engagement: Ten proposals for action. *Active Learning in Higher Education*, 11(3), 167-177. <https://doi.org/10.1177/1469787410379680>

ABOUT THE AUTHOR(S)

Isaac Bamikole Ogunsakin

College of Education, *Wesley University Ondo, Ondo State, Nigeria*

 isaac.ogunsakin@wesleyuni.edu.ng

Adeyemi Alaba Adediwura

Educational Foundations and Counselling, Faculty of Education, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria

Received: August 25, 2025

Accepted: September 02, 2025

Published: November 19, 2025

Citation:

Ogunsakin, I. B. & Adediwura, A. A. (2025). Innovative Assessment Strategies for Enhancing Sustainability Competence in SDG 4 Education: A Framework for Measuring Knowledge, Skills, and Attitudes in Holistic Learning Environments. *SustainE*, 3(3), 481-498. In A. A. Atowoju, E. O. Oyekanmi, A. A. Akinsemolu, & D. M. Duyile (Eds.), *Sustainability, innovation, and development: A Festschrift in honour of Rt. Rev. Prof. Obeka Samuel Sunday* [Special issue].
<https://doi.org/10.55366/suse.v3i3.24>

Disclaimer: The opinions and statements expressed in this article are the author(s)' sole responsibility and do not necessarily reflect the viewpoints of their affiliated organisations, the publisher, the hosted journal, the editors, or the reviewers. Furthermore, any product evaluated in this article or claims made by its manufacturer is not guaranteed or endorsed by the publisher.

Distributed under Creative Commons CC-BY 4.0