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ABSTRACT

n this work, we develop an analog of Gorini-Kossakowski-Sudarshan-

Lindblad(GKSL) for the infinitesimal generator of decoherence-free

subalgebra of Quantum Markov semigroup. The GKSL developed was

then applied on Mn(c). The result showed that the matrix space Ms(c) =

Vo @ V- will not decohere under N(T), i.e Vo = N(T) implies Ma(c) = N(T)
since V- = {0}. Also by introducing GKSL of N(T) on Mn(c), L(x *x) = O.
Keywords: Decoherence-free subalgebra, Infinitesimal generator, quantum
Markov semigroup, eigenvalue and eigenvector.

INTRODUCTION

A subspace of a quantum system Hilbert space that is invariant to non-
unitary dynamics is called a decoherence-free subspace (DFs). The subject
of quantum information processing (QIP) began the study of decoherence-
free subspace with a search for structured methods to avoid decoherence.
Identification of particular states which have the potential of being
unchanged by certain decohering processes ( i.e certain interaction with
the environment )was included as one of the methods. These studies
started with observations made by Pazy, 1983 who studied the
consequences of pure dephasing on two qubits that have the same
interaction with the environment. They found that two such qubits do not
decohere. They also characterized decoherence- free subspace (DFs) as a
special class of quantum error correcting codes.
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In the approach of Blanchard and Olkiewicz, 2006, if the space is an
algebraic space (i.e a von Neumann or a C*-algebra), the decoherence-
free subspace becomes a decoherence-free subalgebra. Therefore, if a
von Neumann algebra is a quantum system (say open), there is a part of
the algebra that behaves like a closed system (i.e a part that is
decoherence-free). This can be used to study the asymptotic behaviour of
the quantum system.The evolution of a closed quantum system which
does not interact with the environment, can be described by a one-
parameter group of automorphism (at)t=0 , with at(x) = e itHxe-itH and H
self-adjoint. Inside an open Quantum system, sometimes, one can have a
subsystem evolving like a closed quantum system where the typical
effects of the interaction with the environment do not appear and the
typical quantum features of the system, like quantum coherence and
entanglement of quantum states are preserved (Dhari et al., 2010). Some
years ago, alots of people have been showing interest in the use of
Quantum Markov Semigroup to model open quantum systems having
subsystems which are not affected by decoherence. In these applications,
the Quantum Markov Semigroup (in the Heisenberg picture) acts as a
semigroup of automorphisms of a von Neumann subalgebra N(T) of B(h),
called the Decoherence-free subalgebra. This subalgebra allows
identification of noise protected subsystems where states evolve unitarily,
moreover its structure and relationship with the set of fixed points also has
important consequences on the asymptotic behavior of the Quantum
Markov Semigroup. Decoherence-free subalgebra allows us to gain insight
into the structure of a Quantum Markov Semigroup, its invariant states and
environment induced decoherence. Indeed, its structure as a von
Neumann algebra has important consequences on the structure and the
action of the whole Quantum Markov Semigroup (Fagnola& Rebolledo,
2008).

This paper focuses on the application of Gorini-Kossakowski-Sudarshan-
Lindblad(GKSL) master equation of infinitesimal generator of
decoherence-free subalgebra of uniformly continuous Quantum Markov
semigroup.The GKSL was applied on the matrix space Mn(c) = VO @ V-.
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The behaviours of the matrix space under Decoherence-free Subalgebra
of Quantum Markov Semigroup and GKSL master equation were the major
concern of this paper.

THE DECOHERENCE-FREE SUBALGEBRA
OF AQUANTUM MARKOV
SEMIGROUP(QMS)

Suppose h is a complex separable Hilbert space. A QMS B(h) is a
semigroup T = (Tt)t=0 of completely positive, identity preserving normal
maps which is also weakly-*-continuous. If T is uniformly continuous,
namely norm continuous, its generator L can be represented in the well-
known (Ogundiran, 2015; Sinha & Goswami, 2007) Gorini-
KossakowskiSudarshan-Lindblad (GKSL) form as

1
L(z) = i[H,2] - 5 > (LiLiz —2LizLy + L] Ly)

1>1

where H = H* and (L; );»1are operators on h such that the series ¥;2,L;*L; is
strongly convergent and [.,.] denotes the commutator [x,y] = xy — yx. The
decoherence-free (DF) subalgebra of T is defined by;

N(T)={z € B(h) : Ti(z"z) = Ty (x)*"Ti(z), Ti(zz™) = Ty (x)Ti(x)* V¢ > 0}.

It is a well-known fact that N(T) is the biggest von Neumann subalgebra of
B(h) on which every Tt acts as a *-endomorphism (Evans,1977).

Preliminaries
The following definitions, lemmas and propositions are necessary for our
results
Definition 1 (Bratelli et al., 1987): A normed vector space is vector space
(V,F) associated with a function |I-l: v - R, called a norm. that obeys the
following axioms

(1) V ueVv,llull=0

(2) v veV,vaeF,llavi=|allv]l

(3) Vv v,ueV, llutvii<liull+ivi
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Definition 2 (Bratelli et al., 1987): Let V be a vector space. An inner product
on V is a rule that assigns to each pairv,w € V a real number (v,w) such
that, forallu,v,w e Vand a € R,

(i) (v, v) = 0, with equality if and only if v = 0,

(i) (v, w) = (w, v),

(i) (u + v, w) = (u, w) + (v, w),

(iv) {av, w) = a(v, w)

Definition 3 (Bratelli et al., 1987): Suppose X be a nonempty set. A function
P: X x X — R is known as a metric provided for all x, y, and z in X,

(1) P(x, y) >0,

(2) P(x,y)=0ifand only if x =y,

(3) P(x, y) = P(y, x),

(4) P(x, y) < P(x, 2) + P(z, y)

A metric space is made up of a nonempty set and a metric on the set.
Definition 4 (Bratelli et al., 1987): Let A be an n x n matrix and let X € C n
be a nonzero vector for which AX = AX for some scalar A. Then A is called
an eigenvalue of the matrix A and X is called an eigenvector of A
associated with A, or a X-eigenvector of A.

Definition 5 (Parthasarathy, 1992): The infinitesimal generator of the
Quantum Markov semigroup {Tt, t > O} is a linear ( but not necessarily
bounded) operator L : D(L) — A

L(a) = lim W,a € D(L).

Where D(L) is the domain of L.

Definition 6 (Bratelli et al., 1987): Suppose U is a vector space over a field
C, U is called an algebra if it is equipped with a multiplication law which
associates to each pair A, B € U, the product A - B and for every A, B, C €
U, the following properties are satisfied

(1) A.(B.C) = (A.B).C (associativity),

(2) A.(B+C)=A.B+A.C (distributive); and

(3) ap(A.B) = (aA).(BB); a, B € C.

Definition 7 (Bratelli et al., 1987): A subspace B of U which is also an
algebra with respect to the operations of U is called a subalgebra.
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Definition 8 (Bratelli et al., 1987): A mapping A € U — Ax € U is called an
involution or adjoint operation of the algebra U if it has the following
properties:

(1) Axx = A,

(2) (AB) * = BxA* ; and

(3) (A + BB) * = aAx + BB,

where q, B are complex conjugates of a and B respectively.

Definition 9 (Bratelli et al., 1987): An algebra with an involution is called a
=-algebra.

Definition 10 (Parthasarathy, 1992): A von Neumann algebra on H is a * -
subalgebra A of L”(H) such that A = A",

Definition 11 (Accardi et al., 1999): A quantum dynamical semigroup (QDS)
on Von Neumann algebra A is a family of bounded linear maps {Tt, t > O}
on A that satisfies the following conditions:

(1) To(a) =a, foralla € A;

(2) Tus(a) = Tt(Ts(a)) = Ts(Tt(a)), foralls,t >0 and alla € A;

(3) Tt is completely positive for all t > O;

(4) Tt is a normal operator on A for all t > O, that is, for every increasing net
(ad)a in A with Tt(vaaa) = vaTt(aa) whenever vaaa € A; or equivalently, Tt is
a o-weakly continuous operator in A for all t > O. That is, the map a —
tr(pTt(a)) is continuous from A to C for each p € S(A), where S(A) is a set of
quantum state on A.

Definition 12 (Agredo, 2014): A quantum dynamical semigroup {Tt, t > O}
on A is said to be a quantum Markov (respectively, sub-Markov) semigroup
if

Tt(l) =1, (respectively, Tt(I) <) vt 20

MAIN RESULTS

Here, we develop an analog of (GKSL) for the infinitesimal generator of
decoherence-free subalgebra of Quantum Markov semigroup.
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Definition 13: The infinitesimal generator of the Quantum Markov
semigroup {Tt, t > O} on a decoherence-free subalgebra will be defined as
a linear (but not necessarily bounded) operator L:D(L) — N(T) such that
Ti(z"x) — x*x

y . ¥z € D(L).

L(z*z) = lim
t—0
The domain of L, denoted by D(L), is the collection of x *x € N(T) such that
the above limit exists.
Theorem:
The GKSL equation

-1 . . . . ;
L(z) = - (Z Lilix+ Y aLili—2% L .;.»L,) +i[H, x|V z € N(T)

>1 =1 1>1

in terms of the decoherence-free subalgebra of a Quantum Markov
semigroup is

L(z*z) = — (Z LiLz'z+ Y a'slili—2Y Lf.(,‘*J'Lp) + 2i[H. 2" x].

1>1 1=1 1>1

Proof:

Suppose the infinitesimal generator of a Quantum Markov semigroup on X
is

w, zeD(L).

L) = fin

where the domain of L, denoted by D(L), is the collection of x € X for which
the limit exists.
Let x € N(T). Then
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L(z"z) = }111[1) ;
e
Tix*Tix — a*x
= lim
t—0 t
T * _ * T _
t—0 t t—0 t
T * — * T —
= lim L) —a lim 7 (z) + 2™ lim Lil®) =2
t—0 t t—0 t—0 t
T * —_ * T —
=i 7t(x ) -z T+ z* lim 75@) i
t—0 t t—0 t
T _ T * _ *
= z* lim iz - + lim @) e x
t—0 t t—0

L(z*z) = "L(z) + L(z™)z.
The GKSL form of L is
SN LiLw+ Y aLiL —2) Lizl; | +i[H,x].
I>1 >1 i>1

Substituting the GKSL equation in (1), we have

Lz'z) = 2* (71 (Z LiL+ Y eLiL - ZZLI‘J:Lg)

1>1 121 =1

H.r|+( (ZL,L;J +ZJ’L1L1—QZLTT*L1)

(=1 =1 =1

i[H,z" )z = (ZLngf .r+Z1: rL;chzlex rLg)

=1 =1 =1

+ia* [H, l]f (’ZL Lir'z+Yy a'slil —2Y  Lia" .!Li) +ilH,a*)x

=1 =1 21

= '71 (Z LiLa*z+ Y Lilate+y o olili+ Y azlily — 2% Liz'zl—2Y  Liz*zL)

1>1 =1 =1 =1 =1 =1

. ox . * -1 * * * * * %
+iz*[H,z] +i[H, z%|z = 5 QELILII m+2;x zL7 L —4;Llr zLy

+2i[H,a"a] = — | Y LiLia"z+ Y a"wLili -2y Liz*zl | + 2i[H,z"a].
>1 >1 >1
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Hence, the GKSL equation in terms of the decoherence-free subalgebra of
a Quantum Markov semigroup is

(z*z) = — (Z.’ Lyx* I+ZJ zL} I(—QZI”“.TL;) + 2i[H, z*x]. (2)

=1 1>1 1>1

Example 1: Let
Vo := Span{z € M,(c) : L(xz) = i\x for some \ € R}
Vi = G)R(’,\<()]V){‘

A[n((:) =We V-
N(T) = {z € B(h) : Ti(z*z) = Ti(x)* Ti(z), Te(zz*) = Ti(x)T(z)* Vit > 0}.

Consider a QMS T generated by L(x) = i[H, x]. Then we have VO = N(T) =
Mn(c), simply because the semigroup is

Tt(a:*m) _ Crt(l‘*)Tt( )_ P'LtH = 71tH 'LterftH

_ PltHl‘*I‘€7uH

“HI‘*I‘P itH Vo

so N(T) = Mn(c), V- = {0} and consequently VO = N(T).

Example 2:
Let u, v in ¢ n be two linearly independent vectors where k u k=k v k= 1.
Introducing a generator L on Mn(c) by

—L(z"z) = |} {u, u){(z"x) v| — 2|v) (u|, *zu) (v] + |2"zv) {u, u) (v].

Since (u‘,u) =l u 1> =1 we have
—L(z"z) = |v)((x"z)"v| — 2(u, 2" zu)|v) (v] + |["zv) (V]|
—L(z"z) = |v)(xx"v| — 2{u, 2" zu)|v)(v| + |z 20v) (0.

This is the generator of a QMS since it can be written in the lindblad form
with H=0and = L; = |u }{v|, L, for [ = 2. Moreover, we have N(T) = {L, L}
0 c Ker(L) € Vo.We want to prove that, in some cases, Vo is strictly bigger
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than N(T) and is not always an algebra. We characterize VO, Kerl and N(T)
and determine the invariant states for these generators. In order to do this,
it will be useful to know the spectrum of L. So consider an eigenvalue A of
the generator and notice that

L(z*z) = A\2"x (3)
& ((z*z)" v, w)v — 2(u, a* zu) (v, w)v + (v,w)z*zv = —Az*zVw € " for
w L v, we have
(v, x*zw)v — 2(u, z72u).0 + 0.2" 20 = —Az*x
(v, " zw) = =Az"zw (4)
Forw = v, we have
(v, x*zv)v — 2(u, z"zu) (v, v)v + (v,v)x* TV = —Ar"TW

since (v, v) = ||v|| 2 =1 we have
(v,2”zv)v — 2(u, " Tu)v + ¥V = —ArT XV

(2(u, " zu) — (v, zv))v = 2"2V(1 + A)

Vo = Ker(L) = {z € My(c) : z(v') Cvrandz*zv = (u, z*zu)v}.

When A =0, (3) and (4) give

L(z*z) =0 (5)
& iz = (v,z o) (6)

and
(v,z"zw) =0forw L v (7)

Then ker(L) is the space described before. In order to see that it coincides
with VO, we can always use (6) and (7) for a purely imaginary A and we
easily conclude that L cannot have a non-null eigenvalues with null real
part.
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CONCLUSION

The result showed that the matrix space Ma(c)=Vo®BV- will not decohere
under N(T), i.e Vo = N(T) implies Mn(c) = N(T) since V- = {0}. Also by
introducing GKSL of N(T) on M, (c), Lx*xy = 0.
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