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Chapter 22

Similarity Solutions of Unsteady Viscous Optically Thin Fluid
Flow with Variable Properties and Thermal Radiation
Adegbie, K. S. Afesomu, S. Bello, P. A. & Adewole A.
Corresponding author’s email: ksadegbie@futa.edu.ng

ABSTRACT

he study examine the dynamics of unsteady viscous optically

thin fluid flow, characterized by variable properties contingent

upon temperature. Acknowledging the fluid's laminar and

incompressible nature, the investigation employs the Cogley et

al. approximation for integrating thermal radiation effects.
Through the use of suitable similarity variables, the complex partial
differential equations governing the physical model are converted
into a more manageable system of ordinary differential equations.
Given the infeasibility of exact solutions for this transformed set, the
homotopy analysis method (HAM) is utilized for approximation
purposes. The study meticulously analyzes how various control
parameters, including the thermal conductivity variation parameter
and the Brinkman number, influence the fluid's velocity and
temperature profiles, presenting the findings through graphical
representations. Notably, it is observed that both velocity and
temperature distributions exhibit an increase in response to
enhancements in the aforementioned parameters.

Nomenclature
y Dimensional distance
n Dimensionless distance
t Dimensional time
T Shear stress
Uo Moving velocity of the lower plate
V] Dynamic viscosity
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K Thermal conductivity

ko Ambient thermal conductivity

To Ambient temperature

Tw Ambient temperature

Co Specific heat capacity

Ho Ambient viscosity

Fluid Density

Dimensional velocity

Dimensional temperature

Radiative heat loss

Dimensionless velocity

Dimensionless temperature

Thermal radiation parameter
Dimensionless viscosity variation parameter
Dimensionless thermal conductivity variation parameter
Brinkman number

Prandtl number

INTRODUCTION

The preponderance of exact solutions identified within the domain of
fluid mechanics is predominantly classified under similarity solutions,
where there's a reduction in the count of independent variables by at
least one. These solutions have been derived through a variety of
methodologies, including the group-theoretic method, dimensional
analysis, and the more heuristic ad hoc method involving free
parameters. Among these, the group-theoretic approach stands as the
most structured and methodical strategy for deriving similarity
solutions, with dimensional analysis being regarded as a subset of this
method. The intricate dynamics of unsteady viscous optically thin fluid
flow, exhibiting variable properties, have captivated the interest of
researchers extensively over recent decades. This keen interest is
attributed to the broad spectrum of significant applications the study of
such fluid flow finds across various scientific and engineering
disciplines. These disciplines span geophysics, metallurgy,
astrophysics, electronics, chemical engineering, aeronautics, and
petroleum engineering, among others. Given the pivotal role this
category of fluid flow plays in such a wide array of fields, numerous
studies have been dedicated to exploring the behavior of unsteady
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viscous optically thin fluids as they interact with objects of various
shapes under different initial and boundary conditions.

Alam et al. (2019) embarked on an investigation concerning the
unsteady flow within a converging channel, adopting a distinctive
similarity approach that amalgamated temporal and spatial variables
into a singular parameter pertinent to the flow problem. In the latter
phase of their research, the aspect of convective heat transfer was
scrutinized. Introducing variable wall temperatures into the equation
unearthed two scenarios conducive to similarity solutions: the first
scenario featured a linear wall temperature profile, while the second
scenario presented an inverse linear wall temperature profile. The
numerical outcomes of this study included variations in skin friction and
Nusselt number along the wedge nozzle, alongside detailed mappings
of velocity and temperature distributions within the boundary layer.
Hossain et al. (2013) directed their investigation towards delineating the
similarity solution for the laminar combined free and forced convective
unsteady boundary layer flow adjacent to a porous vertical surface,
incorporating both blowing and suction phenomena. Initially, the
Boussinesq approximation was utilized to render the governing
boundary layer non-dimensional partial differential equations more
tractable. Following this, based on an exhaustive analysis, similarity
transformations were employed to transmute these simplified coupled
partial differential equations into a suite of ordinary differential
equations. Mohammed (2016) dedicated his research to analyzing the
flow of an incompressible fluid over an isothermal horizontal plate,
employing similarity solutions to this end. This approach facilitated an
understanding of the fluid dynamics and heat transfer characteristics
associated with such flows, providing valuable insights into the
behavior of fluids under varying thermal conditions and the influence of
suction or blowing at porous boundaries.

Ali (2017) addressed the issue of similarity solution of MHD unsteady
boundary layer flow along heat transfer past a moving wedge in a
nanofluid using the Buongiorno model. Koriko and Animasaun (2017),
examined a novel similarity solution for micropolar fluid flow problem
on an upper horizontal surface of a paraboloid of revolution (UHSPR)
considering the impacts of a quartic autocatalytic kind of chemical
reaction. The theory of similarity solution was applied to determine
the appropriate scaling for the proposed angular momentum
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equation. These equations, together with the prescribed boundary
conditions, were solved using a numerical technique known as the
Runge-Kutta method in combination with the shooting method.
Viscosity parameter, which depends on temperature, enhances the
vertical velocity close to free stream but reduces the micro-rotation
near the upper horizontal surface of the paraboloid of revolution.
Additionally, the impact of the thermal radiation parameter on the
temperature profile including heat transfer rate can be significantly
influenced by the thickness parameter. Salawu et al. 2019 analyzed
viscous dissipative unsteady Poiseuille flow of unsteady incompressible
reactive fluid involving a two-step exothermic chemical reaction
within a porous channel made of two parallel fixed walls of width with
convective cooling. Similarity solutions for the evolution of
polydisperse droplets in vortex flows was examined by Dagan et al.
(2017).

Thermal radiation, the process of heat transfer through
electromagnetic waves, plays a vital role in various engineering and
scientific fields. It is prominently observed in daily phenomena such
as the warming of the Earth by the sun. This form of heat transfer
becomes increasingly significant in high-temperature engineering
processes, influencing the design of equipment within fluid dynamics.
Its importance extends across multiple engineering disciplines,
including solar power, mechanical, aerospace, chemical,
environmental, and space technology. Thermal radiation's impact on
fluid flows is crucial in industrial applications such as nuclear power
plants, gas turbines, glass production, and furnace design. It also
plays a key role in cosmic flight aerodynamics, rocket propulsion
systems, plasma physics, and the aerothermodynamics of spacecraft
re-entry at high temperatures. Research in this area, including works
of Adegbie et al. (2019); Kesavaiah and Devika (2020); Rani (2019)
underscores the extensive implications of thermal radiation in
enhancing our understanding and technological capabilities in these
diverse fields.

Adegbie et al. (2019) carried out a study on the ohmic heating of
viscous magnetohydrodynamic flow past a continuously moving
plate, considering factors like buoyancy, thermal radiation, and
viscous dissipation. The mathematical formulation represented a
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modified physical model involving a set of three partial differential
equations. To simplify the analysis, appropriate dimensionless
variables were introduced, transforming the system into two coupled
nonlinear ordinary differential equations. Thereafter, the derived
dimensionless system of equations governing modified model were
solved utilizing the Homotopy Analysis Method (HAM). The study
revealed that the skin friction coefficient alongside heat transfer rate
grow with higher thermal radiation values and shrink as viscous
dissipation parameter value rises. Adegbie and Fagbade 2016
addressed magnetohydrodynamic forced convective flow in a fluid
saturated porous medium with Brinkman-Forcehheimer model, which
is an important physical phenomenon in engineering application.
Bivariate spectral relaxation method (BSRM) proposed by Mosta
seeks to decouple the original system of partial differential equation
(PDEs) to form a sequence of equations that can be solved in a
computationally efficient manner. The obtained solutions showed a
significant effect of the flow control parameters on the fluid velocity
and temperature respectively. Findings show that an increase in
viscosity variation parameter, thermal conductivity parameters
increase the flow velocity and temperature distribution in the
boundary layer region. Increase in thermal radiation parameter leads
to decrease in the local heat transfer rate but skin friction experienced
increment.

Makinde and Animasaun, (2016) examined thermophoresis and Brownian
motion effects on MHD bio-convection of nano-fluid with nonlinear
thermal radiation and quartic chemical reaction on upper horizontal
surface of a paraboloid of revolution, the combined effects of
buoyancy force, Brownian motion, thermophoresis and quartic auto
catalytic kind of chemical reaction on bio-convection of nanofluid
containing gyrotactic microorganism over an upper horizontal surface
of a paraboloid of revolution are analyzed. Seth et al. 2016
investigated unsteady MHD natural convection flow through a fluid-
saturated porous medium of a viscous, in- compressible, electrically-
conducting and optically thin radiating fluid past an impulsively
moving semi-infinite vertical plate with convective surface boundary
condition. Umavathi (2015) reported a detailed analytical and
numerical investigation on free convection flow of viscous fluid
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through a porous medium due to the combined effects of thermal and
mass diffusion. Effect of temperature-dependent viscosity and
thermal conductivity were investigated in the presence of first-order
chemical reaction. The non-Darcy model is applied to define the
porous matrix. The effects of viscous and Darcy dissipations are
considered. The governing equations of continuity, momentum,
energy, and concentration which are coupled nonlinear ordinary
differential equations are solved analytically using regular
perturbation method and numerically using Runge-Kutta with
shooting method.

Bichi and Ajibade, (2020) accounted for the combined impacts of
thermal radiation, viscous dissipation, and varying viscosity on natural
convection unsteady Couette flow within a vertical porous channel.
The study employed suitable similarity variables to transform the
partial differential equations governing the fluid behavior into
dimensionless ordinary differential equations ( ODEs). The emerging
equations were solved using the Adomian decomposition method
( ADM). The study revealed that the fluid velocity including
temperature exhibited an increase with higher Eckert number,
thermal radiation, and viscosity parameter. Ajibade and Bichi, 2019
conducted a study on natural convective Couette flow amid a porous
vertical channel, considering the simultaneous effects of thermal
radiation and varying fluid properties. In the model, the fluid is
taken to be optically dense, and all its physical properties are taken
to be constant except thermal conductivity and viscosity which are
varying with temperature. The non-linear Rosseland heat diffusion
was employed, resulting in highly non- linear flow equations. The
study found that the fluid velocity together with temperature
increased with increment in thermal radiation parameter. Additionally,
the temperature and velocity decreased with an increase in the
thermal conduction.

Jha et al. (2016) conducted a thorough investigation on fully
developed steady natural convection flow within a vertical annular
micro-channel. The study focused on the impact of temperature-
dependent viscosity and also considered the influence of temperature
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jump and velocity slip at the surfaces of the annular micro-channel.
The research revealed that increased viscosity parameter brings forth
enhancement of both the velocity and skin friction within the annular
micro-channel. Hafees and Ndikilar (2014) examined the flow of
viscous fluid between two permeable parallel plates with fluid
injection at the bottom and fluid suction at the top. The work dealt
with a fluid flow which is steady, laminar, viscous, and incompressible.
Pressure gradient present in the fluid generated uniform vertical flow
i.e., the vertical velocity is constant everywhere in the field flow.

Kesavaiah and Devika, (2020) examined the issue of heat transfer and
free convection Couette flow within two infinite porous plates
incorporating the impact of radiation. Babu (2020) analyzed the
magnetohydrodynamic unsteady viscous fluid flow between parallel
plates possessing many tiny pores and angular velocity when the fluid
is being sucked away through both walls at the same rate.

Ebiwareme et al. (2022) utilized the combination of Adomian
decomposition method and Laplace transform to perform an analysis
on unsteady incompressible fluid bordered by two parallel plates in
motion with constant velocity. The nonlinear partial differential
equation modeling the flow is first changed to a nonlinear ordinary
differential equation using similarity transformation. The model
parameters affecting the flow geometry are analyzed and exhibited
in tables and graphs. Kudenatti et al. (2017) addressed the problem of
similarity solutions of the magnetohydrodynamic boundary layer flow
over a constant wedge within porous media. The governing nonlinear
boundary layer equations have been transformed into a third order
nonlinear Falkner-Skan equation through similarity transformations.
This equation has been solved analytically for a wide range of
parameters involved in the study. Various results for the dimensionless
velocity profiles and skin frictions are discussed for the pressure
gradient parameter, Hartmann number, permeability parameter,
and suction/injection. A far-field asymptotic solution is also obtained
which has revealed oscillatory velocity profiles when the flow has an
adverse pressure gradient. The results show that, for the positive
pressure gradient and mass transfer parameters, the thickness of the
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boundary layer becomes thin and the flow is directed entirely towards
the wedge surface whereas for negative values the solutions have very
different characters. Also, it is found that MHD effects on the boundary
layer are exactly the same as the porous medium in which both reduce
the boundary layer thickness.

Soid et al. (2017) took on the challenge of studying the unsteady
magnetohydrodynamic flow alongside transfer of heat on a
contracting sheet with the inclusion of ohmic heating. The obtained
solutions are influenced by several emerging parameters, among
others are Eckert number, magnetic field parameter, the unsteadiness
parameter, and Prandtl number. The results presented encompass
velocity and temperature profiles, alongside local skin-friction
coefficient and local Nusselt number. Notably, for the shrinking sheet
scenario, two solutions are found to exist. Moreover, the study reveals
that magnetic and also unsteadiness parameters have significant
impact on the heat transfer fluid flow phenomena. These parameters
contribute to raised skin friction coefficient and the rate of heat
transfer.

Zaib et al. (2020) performed entropic analysis of mixed convective
magnetohydrodynamic flows of radiative tangent hyperbolic blood
biofluids conveying magnetite ferroparticles from a non-isothermal
vertical fiat plate with the influence of thermal radiation. To make the
governing equations less complex, relevant adjustments are
considered to accurately transform the resulting partial differential
equations into ordinary differential equations. The modified
mathematical expressions are then solved using a numerical approach
employing an efficient algorithm based on the bvp4c method.
Unsteady magnetohydrodynamic mixed convective flow of water on a
sphere with mass transfer was addressed by Jenifer et al. (2021). An
implicit finite difference scheme, in conjunction with the quasi-
linearization, was utilized to find non- similar solutions. Skin friction is
hindered or at least delayed from vanishing by increment in mixed
convection for both cases. That is, steady fluid flow and unsteady
fluid flow. Skin friction and also heat transfer coefficients are raised
with a rise in time or MHD parameter. Having been motivated and
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inspired by all these published paper on similarity solutions and
unsteady viscous flow, a deserted area in the body of knowledge is
sighted. However, reporting the similarity solutions of unsteady
viscous optically thin fluid flow with variable properties and thermal
radiation has not been attempted; hence this study.

GOVERNING EQUATIONS

This study examines the unsteady parallel flow near a flat plate that
suddenly begins moving at a constant velocity Uo within its own plane.
Characterized by viscous dissipation due to a high velocity gradient, the
flow is considered fully developed and incompressible. Influences from
pressure gradients and body forces on the flow are disregarded, and the
no-slip condition at the boundary is assumed to apply. Both viscosity and
thermal conductivity are presumed to vary with temperature. The plate
temperature, denoted by Tu, is assumed to be higher than the ambient
temperature To of the fluid. Given these assumptions, the equations that
model the physical scenario are as follows:
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Figure 22.1: Schematic representation of the flow
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Following the supposition above, the governing equations are formulated
as follows:

po=5 (WD) 0

B IO

with initial conditions and boundary conditions:

u(y,0) =0,T(y,0) =Tyatt =0, (3)

{u(O, t)=U,T0,t)=T, aty= O,} @)
u(eo,t) =0,T(0,t) =T, aty = oo.

To carry out the similarity transformation of momentum equation, energy
equation, initial and boundary conditions, the following similarity variables
are adopted as:

T—T,

- — —
N =2 u(t) = Uf ()6 = 72

The differential radiative flux term ‘Z—z: can be complex to model and for this

reason, an algebraic approximation is utilized. The research of Cogley et al.
brought forth a compact and numerically improvable mathematical
expression. It was shown that in the optically thin limit, the fluid is not self-
absorbing but will absorb radiation emitted by the confining boundaries
(i.e., the continuously moving horizontal plates in this case) and it is taken
that the fluid is optically thin possessing a relatively low density. The
radiative heat flux is given by:

S = 4y (T = Ty) 5)

dy

where y denoted mean radiation absorption coefficient and is given by the
following integral,

P
y? = f0°° K, ( ;;’ﬁ) da (6)
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Where K; is the absorption coefficient, A is the wave length, and e;; is the
Planck function. In this present study, temperature dependent dynamic
viscosity as in Adegbie et al. 2019 and Akinbobola and Okoya, 2015 can
be expressed as:

1 _1 -
A= [1+y(T - Ty )

which can still be written as:

ﬁ—a(T T.) (8)

where o = #1 and T, = (TO —%) are constants and their values depend
0

on the reference state and the thermal properties of the fluid.

Also, following Salahuddin et al. 2020 and Opadiran and Okoya,
2021, temperature dependent thermal conductivity is adopted as:

K(T) = ko [1 +,1(T o] 9)

_TO
Therefore, the dimensionless governing equations are:

L] g2, (10)

dn L\a-6/ dn dn

—[(1+/19)d9]+3 (a“e)(ﬂ) —R9+Prn%=0, )

Subject to boundary conditions:

{f=1,9=1,atn=0,} (12)
f=06=0,atn — oo.
where
=& 1 jsthe viscosity variation parameter
TW_TO Y(TW_TO)

vC, .
Pr = pk—" is Prandtl number
0

A is the thermal conductivity variation parameter

2
Br = —% s the Brinkman number
kD(TW )
R =@, is the thermal radiation parameter

0
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METHOD OF SOLUTION:
HOMOTOPY ANALYSIS METHOD

We will now solve (10), (11) with boundary conditions (12) by
homotopy analysis method. In view of the boundary conditions (10),
f (n) and 6(n) can be expressed by the set of base functions of the
form:

{njexp(—nn):j >0,n=> 0}. (13)

By the rule of solution expression, the solution of f(n) and 6 (n) can
be represented in a series form as:

f) = Yoo X521 anjn’exp(=nj), (14)
0(n) = Lo=o X521 by j n/exp(—nj), (15)

where a,, ; and b, ; are constants.
We now construct the zeroth-order deformation equation as
follows:

A= DLf @) = fo] = qhe He N [f (1; @), 6 (n; @)]
(16)

(1= q)Lel0(m; @) — 8] = qhoHg (N [f (n; @), 6 (m; @]
(17)
Next, we construct mth order deformation equation by differentiating (16)

and (17) m times with respect to g and dividing it by m!
Lelfon () = Xmfim—1()] = heHp () D1 [Nf [f(n;9).6(m; q)]], (18)
Lo[0m () — XmOm-1()] = haHo (M) D1 [Ng[f (1; ), 0C; 1], (19)

subject to
{fm(n)=1.9m(n)=1atn=0,} 20)
fm(@) =0,0,(n) =0atn - o,
Where
om<1,
Hm = {1 2 > 1.} (21)
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Linear operators L and Ly are defined as:
8% f (m;q9)
Llf o ) = =52 — £ (i ), (22)

Le[0(m; )] = azfa;:q) - 0(n; q), (23)

Initial guesses fy () and 8,(n) are chosen as:

fo(m) = exp(-n), (24)
0o(n) = exp(-n), (25)
N:[f (; ), 6(1; )] ;—n [(a_;(‘n; q)) SDD) 4 5L ;’:q),

Nolf(m; @), 0(n; @] = ;_n [(1 +20(n; ) dﬂézzq)]

+Br (a Boén q)) (ﬂ)z

+Prn——= de(n Q) —RO(n; q),

Dy [Nf[f(n: ), 0(n; q)]] -

d?fm—q m—-1 1 dfn kdgk m—-1 (2= 0m-1-k d_fk
dan? + 2n=o (a—em_l_n)Zk =0 an dan +n k=0( a )dn
(28)
d20, , d20,,
Dovca [Nolf (0; ), 001 )] = =5 42 ) Bncsc gy
k=0

m—1
szl?m_l_kﬂ
ros dn dn

m-1 k df df
a —
+Br2( —0 )Z o
k=0 a m-1-k n=0 n n
db,,_
+Pr—L — RO
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RESULTS AND DISCUSSION

Convergence Analysis of Solutions

By using Mathematica package BVPH 2.0, 10th order homotopy
approximation of f (n) along- side 6(n) are gotten when a = 0.1, A= 0.5,
R =0.1,Ec = 0.1, Pr = 0.71. In order to obtain the permissible values of
auxiliary parameters hr and hg, h-curves are drawn at 10th order
homotopy approximations as shown in Figure 22.2 below:

f'(0)
o
#(0)

-20 -15 -1.0 -05 0.0 0.5 1.0
he

-25 —2‘.0 —1l.5 —1‘.0 —6.5 OtO 0:5 1.0
h¢

Figure 22.2: hy —curve and hg —curve of f’(0) and 6(0) obtained at 10th
order approximation respectively.
These figures show that the range for admissible values of hrs and
he are respectively -1.50 < hy < 0.25 and -1.15 < hy < -0.20. The
optimal auxiliary parameters are approximately found to be hg=
-0.3167, hy = -0.4581.

Discussion of Results

This part presents the repercussions of various emerging control
parameters on the dimensionless velocity alongside dimensionless
temperature in graphical forms (see Figure 22. 3 to Figure 22.12).
Figure 22.3 and Figure 22.4 respectively exhibit the dimensionless
velocity distribution and dimensionless temperature distribution
under the influence of growing viscosity parameter when A= 0.1, Pr =
0.71, Br =1, R = 0.1. It is observed that an increase in a causes a
decrease in velocity profile. Viscosity variation parameter is inversely
proportional to temperature difference (Tw - To). Therefore, decrease in
temperature difference results to a higher value of a. Physically, liquids
with low temperature possess high viscosity which slow down the transport
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of the fluid. Figure 22.4 shows that temperature profile exhibits the
same pattern. It is observed that the temperature of the fluid
decreases with increasing value of a. Physically, liquids with high
viscosity move slowly and possess low temperature, hence the decrease in
velocity and temperature of the fluid.

Figure 22.5 and Figure 22.6 show the effect of thermal conductivity
variation parameter on both velocity profile and temperature profile
respectively when a =2, R=0.1, Br = 0.1, Pr = 0.71. It is evident that
increase in the thermal conductivity parameter A leads to increase in
the velocity profile. Also, it is clear that an increase in the values of A
results in increase in temperature profile. This is expected because
thermal conductivity is a direct linear function of temperature.
Physically, increase in thermal conductivity parameter
improves the heat conductivity of the fluid. Therefore,
dimensionless temperature escalates since the heat
conduction has improved and hence the increase in velocity.
The effect of thermal radiation parameter R on dimensionless
velocity profile and dimensionless temperature profile is shown in
Figure 22.7 and Figure 22.8 respectively when a =1.5, A= 0.1, Br =1,
Pr =0.71.

Figure 22.7 shows that the velocity profile decreases as the radiation
parameter ascends. Temperature profile is seen to descends with
increase in thermal radiation parameter as shown in Figure 22.8. This
is expected because increase in the value R induces greater emission of
heat from the fluid by means of radiation. Dimensionless velocity and
temperature distributions for varying Prandtl number is shown in
Figure 22.9 and Figure 22.10 respectively when a =2, A =0.1, R =
0.1, Br = 1. Figure 22.9 shows that rising Pr leads to shrinking
velocity. Physically, at a fixed value of specific heat
capacity and thermal conductivity, increase in the value of Prandtl
number Pr simply implies, increase in the magnitude of fluid viscosity.
Equivalently, enhancing values of Pr means increase in viscosity but
decrease in thermal conductivity. When the value of fluid viscosity is
high this corresponds to fluid with low velocity.
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Figure 22.10 shows the effect of Pr on temperature profile. It is obvious
that the temperature profile is reduces as Pr increases. The reason is
that higher values of Pr are equivalent to decreasing the thermal
conductivity, and therefore decreases the thermal diffusivity which
leads to the decrease of the energy transfer ability. The effect of
increasing value of Br on velocity profile and temperature profile is
visible in Figure 22.11 and Figure 22.12 respectively when a=1.6, R = 0.1,
A =0.1, Pr = 0.71. It evident that the velocity profile ascends as the
value of Br increase. Also, temperature distribution increases as a
response to increment in Brinkman number Br. Physically, boost
in the temperature of the fluid is credited to the internally generated
heat added by the working fluid due to viscous dissipation.
Consequently, the fluid experiences swift transport due to decrease in
velocity as a result of growing temperature.

10 T T T T]
— a=2

0.8 — a=3 ]
a=4

D.E — a=5 :

0.4 i

0.2 -

0.0 1 L L P I L1y L PR L 1]

0 1 2 3 4 3 B

Figure 22.3: Effect of viscosity variation parameter on velocity
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Figure 22.5: Implication of thermal conductivity parameter on
velocity
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Figure 22.6: Implication of thermal conductivity parameter on
temperature
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Figure 22.7: Effect of thermal radiation parameter on velocity
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Figure 22.8: Effect of thermal radiation parameter on temperature
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Figure 22.9: Influence of various Prandtl number on velocity.
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Figure 22.10: Influence of various Prandtl number on temperature.
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Figure 22.11: Velocity profile for varying Brinkman number.
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Figure 22.12: Temperature profile for varying Brinkman number.

CONCLUSION

Similarity solutions for unsteady viscous optically thin flow,
considering the effects of temperature-dependent viscosity and
thermal conductivity along with heat loss through thermal radiation,
have been thoroughly investigated. The viscosity was modeled as
inversely proportional to temperature, while the thermal conductivity
of the fluid was considered a linear function of temperature. The study
applied the Cogley et al. approximation for modeling radiative heat
loss and employed the homotopy analysis method to derive a semi-
analytic solution. Moreover, the impact of various emerging
parameters was elaborately presented. Based on the findings of this
investigation, the following conclusions were reached:
1. velocity distribution escalates with a rise in thermal conductivity
variation parameter A, Brinkman number Br;
2. velocity distribution reduces with increment in viscosity variation
parameter a, thermal radiation parameter R, Prandtl number Pr;
3. increment is observed in the fluid temperature as a result of
increase in thermal conductivity parameter A, Brinkman number
Br;
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4. viscosity variation parameter a, thermal radiation parameter R,
and Prandtl number Pr made temperature profile to decrease.

RECOMMENDATION(S)

Future research could build upon this study by incorporating a moving
catalytic plate, examining its influence on the system. This addition
offers a new aspect to the investigation, potentially providing valuable
information on heat transfer, reaction rates, and its practical
implications in areas such as chemical engineering.
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