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ABSTRACT

his paper examines the approximate solution of general first
order stochastic differential equations (SDEs). Two different
methods of solution were considered. They include Drift-implicit
Euler-Maruyama method (DIEMM) and full-implicit Euler-
Maruyama method (FIEMM). The two methods were adapted from Explicit
Euler-Maruyama method (EEMM). Two problems in the form of first order
SDEs considered are Black-Scholes option price model (BSOPM) with a
drift and without a drift function. The absolute errors were calculated

. . . . . 4 -5 -6
using the exact solution and numerical solution for stepsizes2 ~,2,2,

27 ,278,27° Comparison in performance of the methods was achieved
using mean absolute error criterion. The mean absolute error was then
used to determine the order of convergence for each method. The order
of convergence obtained for DIEMM and FIEMM was compared with that
obtained using EEMM. The results showed that the performance of EEMM
was better than DIEMM while the performance of FIEMM was better than
that of EEMM and DIEMM for first problem. It was noted that the order of
convergence of EEMM and DIEMM are approximately the same in the
second problem. This can be associated with the absence of Drift function
in second problem. However, FIEMM outperformed EEMM and DIEMM.
This is because its order of convergence was less than that of EEMM and
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DIEMM for second problem. Also, the graphical solutions were

constructed for each method can also be identified for stepsize 27,

Keywords: Stochastic Differential Equations, 1td Lemma, Explicit Euler-
Maruyama Method, Drift-Implicit Euler-Maruyama method, Full-Implicit
Euler-Maruyama method, Wiener process, Black Scholes Option Price
Model, Mean Absolute Error, Order of Convergence.

INTRODUCTION

Modeling physical systems using Ordinary Differential Equations (ODEs)
overlooks stochastic effects. Incorporating random elements into these
equations results in Stochastic Differential Equations (SDEs), with the term
"stochastic" referring to noise (Rezaeyan and Farnoosh, 2010). A first-order
Stochastic Differential Equation is an equation of the specified form.

X = (6 X (1) +a(tLX (1) 7. X () =X, (1.0)
where f:[0,T] x R* — R" is a drift function.

Equation (1.0) can be written as

dxd—t(t):f(t'x(t))+g(tvx(t))'7' X (t,) =X, (1)

Where g:[0,T] x R* — R™™is the diffusion function. The noise » in

equation (1.1) is generally called Gaussian white noise. It is expressed as
dW (1), where (t) is the Wiener process. For the properties of Wiener

dt
process see Higham (2001) and Williams (2006) in Ganiyu et al (2015).
Equation (1.1) can be written as

dX (t)=f(t, X (t))dt+g(t, X (t))-dW (1), X (t,)=X, (1.2)
Integrating (1.2) from O tot we have
X(t)=X, +J': f(s,X (s))ds+J'otg(s,X (s))dws (1.3)

The first integral on the right-hand side of equation (1.3) is known as the
Riemann integral, while the second is referred to as the Itd integral or
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stochastic integral. Numerous researchers have conducted studies on
Stochastic Differential Equations (SDEs) of the type described in form (1.2).
Among them are Platen (1992), Oksendal (1998), Higham (2001), Burrage et
al. (2000), Burrage (2004), Richardson (2009), Anna (2010), Razaaeyan
and Farnoosh (2010), Fadugba et al. (2013), Bokor (2003), Sauer (2013),
Kayode and Ganiyu (2015), Kayode et al. (2016), Ganiyu et al. (2018), and
Ganiyu et al. (2021b).

The aim of this paper is to find the numerical solution of stochastic
differential equations using two methods. The methods are drift-implicit
Euler-Maruyama and full-implicit Euler-Maruyama methods. The objectives
are; to use each of the method aforementioned to determine the
approximate solution of two stochastic differential equations used in
option pricing, obtain the absolute error for each of the method from the

corresponding exact solution and numerical solution for stepsizes2 ",

2°, 2% 27 2% 27 to compare the performance of the methods
using mean absolute error criterion and to determine the accuracy of each
method using strong order of convergence property.

RESEARCH METHODOLOGY

Numerous methodologies exist for solving SDE (1.2), including the Euler-
Maruyama method, Milstein method, explicit strong order one Runge-
Kutta method, Heun method, and others. For solving SDE (1.1), the Drift-
implicit Euler-Maruyama method (DIEMM) and Full-implicit Euler-Maruyama
method (FIEMM) were employed, as utilized by Wang and Liu (2009). Their
outcomes were benchmarked against results from the Explicit Euler-
Maruyama method (EEMM), referenced in the studies by Kayode et al.
(2016) and Ganiyu et al. (2018). Additionally, Higham (2001) applied the
EEMM in the context of an autonomous system of first-order stochastic
differential equations.

The EEMM derived by Kayode et al (2016) is of the form

X=X+t f (X, ) +9(z;. X)W, . j=0,1,2,..L @0
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According to Wang and Liu (2009), the EEMM in equation (2.1) can made

implicit by introducing implicitness in the term otf (Tj, X i ) giving rise to
drift-implicit Euler-Maruyama method (DIEMM)

X=X, +3tf (20, X ) +0(0, X)W, j=0,1,2,...L (2.2)

i+ i

By introducing implicitness in the second function at the right hand side of
equation (2.2), this gives full-implicit Euler-Maruyama method (FIEMM).

Xjp =X+t (7,5, X 1) +0(0 X )OW, - ]=0,1,2,.L (2.3)

Implementation of the Methods

The method in equation (2.1) was considered by Higham (2001) for EEMM
using backward difference. In this paper, we shall apply the two methods
(2.2) and (2.3) to SDE (1.2) using discritised interval [O,T] as

0<7,<g < <7, <7, =T Let 5»(:1 be the stepsize defined as

St:=7;,,—7;, where N are some integer and 7; = jot . The Ot -space
path increment dw, =W, _WHwiII be approximated by summing the

underlying dt -space increments as established by Higham (2001) using
Winc =sum(dW (R*(j-1)+1:R*}) (2.4)

Wiener increment OW will be generated in MATLAB over the space
intervals by usingdW :=sqrt(dt)*rand (1,N). For computational

purpose, we shall assume that R=1, Dt=R*dtand L=N/R. The
exact and numerical solution will be obtained using MATLAB software
program.

Mean Absolute Error Criterion

In assessing the accuracy of any numerical method, it is essential to
consider the properties of the solution produced by such a method. A key
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property of SDEs is the convergence of the solution method employed.
The convergence issue of SDEs has been explored by numerous
researchers, including Higham (2001), Burrage (2004), Beretta et al.
(2000), Lactus (2008), Sauer (2013), Fadugba et al. (2013), Kayode et al.
(2015), Kayode and Ganiyu (2015), Kayode et al. (2016), Ganiyu et al.
(2018), Ganiyu et al. (2021b), and Ganiyu et al. (2021c), among others.

The convergence of a method of solution of SDEs depends on the
magnitude of the mean or expected value of the absolute error being
measured. This can be defined as follows.

Suppose a stochastic differential equation of the form (1.2) is given.

Suppose further that X (t) and xh(t) (whereh =6t is the stepsize)
represent the true solution and numerical approximation of the SDE
respectively, the absolute error & is defined by

g=[X(t)-X"(t)| (2.5)
The absolute error in any experiment shall be investigated by chosen the
stepsizedt =27*.
The mean absolute error (MAE) Eh is defined by

E"=E[X (t)-X"(t) (2.6)
where E represent the mean or the expected value.
The Strong order of convergence (SOC) of each method is determined by

— . . -4 55 o6 o7
considering the mean absolute error for six stepsizes2 ", 27>, 2, 2,

2%, 2°

Remark 2.1

The accuracy of a solution method is gauged by its Mean Absolute Error
(MAE). From a list comparing the MAE values of different methods, the one
with the lowest MAE is considered to be the most accurate. Additionally,
the performance and accuracy of a solution method can be evaluated by
identifying which method exhibits the lowest Strong Order of
Convergence (SOC).
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SOLUTION OF FIRST ORDER STOCHASTIC
DIFFERENTIAL EQUATIONS USING DRIFT-
IMPLICIT AND FULL IMPLICIT EULER-
MARUYAMA METHODS

In this section, two problems in the form of first order stochastic
differential equation (1.1) will be considered. The two methods (2.2) and
(2.3) will be applied to find the approximate solution of the SDEs. The
targeted problems are stated below.

Problem 1

dX (t) = X (t)dt+oX (t)dW (t), X (t,)=X, (3.1)
where 1 =0.0002 and o =0.0001are arbitrary values.

The exact solution of the SDE (3.1) is

X (t) = X, exp((4—050" )t+oW (t)) (3.2)
Problem 1 is the Black-Scholes option price model with a drift function
,uX (t) and diffusion function o X (t) . The problem was also used by
Higham (2001) and Sauer (2013).

Problem 2
dX (t)=oX (t)dW (t), X (t,) =X, (3.3)

Where o =0.0001is an arbitrary value.

The exact solution of the SDE (3.3) is

X (t)= X, exp(-0.50°t + oW (t)) (3.4)
Problem 2 is the Black-Scholes option price model without a drift function
but with diffusion function o X (t) . In carrying out our numerical

-9
N

experiment, the stepsizes considered are2™*, 27°, 2%, 27, 2%, 2% |t

is assumed that X, =1 for each of the problem.
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The numerical solution of the given problems in (3.1) and (3.3) can then be
determined using DIEMM and FIEMM. For the study of solution to first
order Stochastic Differential Equations using Explicit Euler-Maruyama
Method (EEMM) for Problem 1 as well as simulation curve associated with

the method see Ganiyu et al (2018).

Solution of First Order Stochastic Differential Equations
using Drift Implicit Euler-Maruyama Method (DIEMM) For

Problem1

Applying DIEMM of equation (2.2) to problem?1 gives

j+l

(1— y5t)

_ X (L+oow;)

j=012, L (35

Table 8.1: Result of using DIEMM (3.5) for solution of Problem 1 with h= 24

t-value Exact Solution Numerical Solution Absolute Error (€)
0.062500 1.000035213412162 1.000035213544854 1.32691635e-010
0.125000 0.999992194240297 0.999992193222421 1.01787578e-009
0.187500 0.999998717493128  0.999998716848012 6.45116072e-010
0.250000 1.000012935644641 1.000012935388670 2.655971022e-010
0.312500 0.999974930990167 0.999974929849455 1.14071230e-009
0.375000 0.999978328502518 0.999978327710996 7.91522403e-010
0.437500 0.999988796767910 0.999988796364937 4.02972433e-010
0.500000 0.999951804297058 b.999951803059934 1.23712329e-009
0.562500 0.999984007130832 0.999984006090166 1.04066544e-009
0.625000 1.000014922754158  1.000014921934517 8.19640356e-010

The mean absolute error ( Eh) is 7.484290742709731e-010.
Table 1 shows the exact solution and numerical solution of problem 1 using

DIEMM with stepsize 2. The mean absolute error for other stepsizes 275,

27,27, 2% 27can be similarly determined.
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Drift Implicit Euler-Maruyama Method (DIEEMM) for Solution of Problem 1 Using Step size 124
1.0001 T T T T T T T T T

—&— Exact Solution
1.0001 - —— Drift-Implicit approximation

1.0001

1.0001

X(t)

0.9999 r r r r r r r r r
0

Figure 8.1 shows the sample path of the exact solution and numerical
solution of problem 1 using DIEMM. The graphical solution for other
stepsizes, 27,27, 2, 27° can be obtained in a similar manner.

Solution of First Order Stochastic Differential Equations
using Full-Implicit Euler-Maruyama Method (FIEMM) for
Problem 1

Applying FIEMM of equation (2.3) to problem 1 gives

X,
Xn= ! . j=012,---,L (3.6)
(1- ust— oW, )
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Table 8.2: Result of using FIEMM (3.6) for solution of Problem 1 with h= 24

t-value Exact Solution Numerical Solution Absolute Error (€)
0.062500 1.000022713050122  1.000035214344691 9.32528721e-010
0.125000 0.999967194747936  0.999992196410535 2.17023799e-009
0.187500 0.999961218244337  0.999998719997158 2.50403043e-009
0.250000 0.999962936247854  1.000012938562295 2.91765345e-009
0.312500 0.999912434510015  0.999974934942339 3.95217203e-009
0.375000 0.999903332940250 0.999978332772970 4.27045155e-009
0.437500 0.999901301576163  0.999988801405700  4.63778982e-009
0.500000 0.999851814116220 0.999951809931362 5.63430380e-009
0.562500 0.999871515257816 0.999984013596369 6.46553755e-009
0.625000 0.999889928701104  1.000014930010315 7.25615723e-009

The mean absolute error ( Eh) is 4.074086257244148e-009.
Table 8.2 shows the exact solution and numerical solution of problem 1

using FIEMM with stepsize 24. The mean absolute error for other stepsizes

2%, 2%, 27, 2%, 2°can be similarly determined.

Full Implicit Euler-Maruyama Method (FIEMM) for Solution of Problem 1 Using Step size 1724

1.0001

1.0001

1.0001

1.0001

T T T T

T T T T

—— Exact Solution
—o— Full-implicit approximation

0.9999
0

Figure 8.2 shows the sample path of the exact solution and numerical

solution of problem 1 using FIEMM. The graphical solution for other

stepsizes27°,27%, 277, 278, 27° can be obtained in a similar manner.
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Solution of First Order Stochastic Differential Equations
using Drift Implicit Euler-Maruyama Method (DIEMM) For

Problem 2
Applying DIEMM of equation (2.2) to problem 2 gives

Xia=X;(1+0oW,), j=01,2,+-,N-1

(3.7)

Table 8.3: Result of using DIEMM (3.7) for solution of Problem 2 with h= 24

t-value Exact Solution Numerical Solution Absolute Error (€)
0.062500 1.000022713050122  1.000022713104684 5.45625767e-011
0.125000 0.999967194747936  0.999967193573839 1.17409638e-009
0.187500 0.999961218244337  0.999961217364878 8.79459616e-010
0.250000 0.999962036247854  0.999962935679405 5.68449177e-010
0.312500 0.999912434510015  0.999912432978780 1.53123503e-009
0.375000 0.999903332940250 0.999903331680078 1.26017163e-009
0.437500  0.999901301576163  0.999901300626400  9.49762713e-010
0.500000 0.999851814116220 0.999851812254308 1.86191218e-009
0.562500 0.999871515257816 0.999871513514227 1.74358872e-009
0.625000 0.999889928701104  0.999889927100396 1.60070812e-009

The mean absolute error ( Eh) is 1.162394613896112e-009.

Table 8.3 shows the exact solution and numerical solution of problem 2
using DIEMM with stepsize 2. The mean absolute error for other stepsizes

27°,27%, 27,28 27can be similarly determined.
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Drift Implicit Euler-Maruyama Method (DIEMM) for Solution of Problem 2 Using Step size 124

1 T T T T T T T T T
—— Exact Solution
—=— Drift Implicit approximation

0.9999
X®

0.9999

0.9998

0.9998 r r r r r r r r r
0 R A

Figure 8.3 shows the sample path of the exact and numerical solution of
problem 2 using DIEMM. The graphical solution for other stepsizes 2_5,
27,27, 2% 27 can be obtained in a similar manner.

Remark 3.1
The result obtained using DIEMM and EEMM (See Ganiyu et al (2018) for

problem 2 are the same, the reason for this is that there exist no drift
function to be made implicit in the method.

Solution of First Order Stochastic Differential Equations
using Full-implicit Euler-Maruyama Method (FIEMM) For

Problem 2
Applying FIEMM of equation (2.3) to problem 2 gives

X.
X. Z—J, j=0,12,---,N-1 (3.8)
It (l—aéWj) J
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Table 8.4: Result of using FIEMM (3.8) for solution of Problem 2 with h= 24

t-value Exact Solution Numerical Solution Absolute Error (£)
0.062500 1.000022713050122 1.000022713620581 5.70459457e-010
0.125000 0.999967194747936  0.999967197171885 2.42394904e-009
0.187500  0.999961218244337  0.999961220998618 2.75428047¢-009
0.250000 0.999962936247854 0.999962939316104 3.06824999e-009
0.312500 0.999912434510015 0.999912439165784 4.65576888e-009
0.375000 0.999903332940250 0.999903337949866 5.00961606e-009
0.437500 0.999901301576163 0.999901306900301 5.32413780e-009
0.500000 0.999851814116220 0.999851820977118 5.86089729e-009
0.562500 0.999871515257816 0.999871522625413 7.36759731e-009

0.625000 0.999889928701104  0.999889936550860 7.84975573e-009

The mean absolute error ( Eh) is 4.588471202993105e-0009.
Table 4 above shows the exact and numerical solution of problem 2 using

. . . -5

FIEMM with stepsize 2. The mean absolute error for other stepsizes2 ™,
-6 57 58 o9 L .

27,2, 27, 27 can be similarly determined.
Full Implicit Euler-Maruyama Method (FIEMM) for Solution of Problem 2 Using Stepsize 1124

1

14

0.9999

0.9998

T T T U

T T T

T

—&— Exact Solution

—o— Full Implicit approximation

0.9998
0

06 07 08
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Figure 8.4 shows the sample path of the exact and numerical solution of

problem 2 using FIEMM. The graphical solution for other stepsizes 2_5,

| _7 . — . . .
2% 277,28 27° can be obtained in a similar manner.

COMPARISON OF MEAN ABSOLUTE
ERROR (MAE) OF EXPLICIT, DRIFT-
IMPLICIT AND FULL-IMPLICIT EULER-
MARUYAMA METHODS FOR SOLUTION
OF FIRST ORDER SDES OF PROBLEM 1 (P1)

Stepsize || Explicit EMM P1 Drift Implicit EMM P1 Full Implicit EMM P1
[Kayode and
Ganiyu (2016)]
24 6.36669439e-010 7.48429074e-010 4.07408626e-009
25 1.04921388e-009 1.04294593e-009 4.48671372e-009
26 9.69581149e-010 9.70649827e-010 4.40708724e-009
27 6.30707042e-010 5.565700275e-010 4.06850471e-009
28 2.52163668e-010 2.21823759e-010 3.67923086e-009
29 1.14792709e-010 9.61350666e-011 3.54315376e-009

8.5 Comparison of Strong Order Convergence of Explicit, Drift-Implicit
and Full-Implicit Euler-Maruyama Methods for Solution of First Order SDEs
of Problem 1.

Method Order of Convergence P1 | Residual P1
Explicit EMM[Kayode and 0.54710253 1.09749078
Ganiyu (2016)]

Drift Implicit EMM 0.63736669 1.03290638
Full Implicit EMM 0.05660868 0.13288578

8.6 Comparison of Mean Absolute Error (MAE) of Explicit, Drift-Implicit and
Full-Implicit Euler-Maruyama Methods for Solution of First Order SDEs of
Problem 2 (P2).
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Stepsize | Explicit EMM P2 Drift Implicit EMM | Full Implicit EMM P2
Ganiyu et al| P2 (New Method2)
(2018) (New Method1)
24 1.16239446e-9 1.16239461e-009 4.58847120e-009
25 1.25768166e-9 1.25768170e-009 4.69481000e-009
26 1.07798138e-9 1.07798177e-009 4.51515269e-009
27 6.09374184e-10 | 6.09373751e-010 4.04685462e-009
28 2.23838359e-10 | 2.23838781e-010 3.62954590e-009
29 1.05161935e-10 1.05163089e-010 3.52669949e-009

8.7 Comparison of Strong Order Convergence of Explicit, Drift-Implicit and
Full-Implicit Euler-Maruyama Methods for Solution of First Order SDEs of
Problem 2

Method Order of Convergence P2 Residual P2
Explicit EEMM Ganiyu et 0.73216346 0.85947327
al (2018)

Drift Implicit EMM 0.73216104 0.85946835
Full Implicit EMM 0.09057947 0.09205844

DISCUSSION

In this paper, we have explored two methods for solving general first-order
stochastic differential equations (SDEs): the two methods are Drift Implicit
Euler Maruyama method (DIEMM) and full implicit Euler Maruyama method
(FIEMM). Each of the method was used to determine the numerical
solution of two problems used in option pricing. The first problem is with a
drift function and the second is without a drift function. The exact
solutions of the given stochastic differential equations were determined.
This provided the opportunity to obtain the absolute error & at time

te[O,T], where T =1. The mean absolute error E" of each method

was calculated to compare the performance of the methods. The mean
absolute errors were used to determine the order of convergence of each
method. This had provided the opportunity to determine the accuracy of
the methods. The results obtained were used to compare the results
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obtained using explicit Euler Maruyama method (EEMM) by Kayode and
Ganiyu (2016) and Ganiyu et al (2018). Our analysis revealed that the order
of convergence of the EEMM is less than that of the DIEMM, while the
FIEMM's order of convergence is lower than both the EEMM and DIEMM for
the problem 1. However, for the problem 2, the order of convergence of
the EEMM closely matches that of the DIEMM, with the FIEMM's order of
convergence still being the lowest. Graphical representations of each

method's solutions were also generated for stepsize 2.

CONCLUSION

We have analyzed two scenarios involving first-order stochastic
differential equations (SDEs). The first scenario addresses the Black-
Scholes option pricing model incorporating a drift function, while the
second scenario considers the same model but without a drift function. To
solve these SDEs, we applied two distinct methodologies: the drift-implicit
Euler-Maruyama method (DIEMM) and the full-implicit Euler-Maruyama
method (FIEMM). The effectiveness of these methods was evaluated by
calculating the absolute errors between the exact solutions and the
numerical solutions derived using the aforementioned methods. To
compare the performance of the methods, the mean absolute error for

each method was obtained using stepsizes2™*, 27°, 2%, 277, 278, 27°.
The results showed that the accuracy of EEMM is better than that of
DIEMM because the order of convergence of EEMM is less than that of
DIEMM, while that of FIEMM is better than that of EEMM and DIEMM
because its order of convergence (OOC) is less than that of EEMM and
DIEMM for problem 1. However, the order of convergence of EEMM is
approximately the same as that of DIEMM, while that of FIEMM is more
accurate than EEMM and DIEMM because the OOC is less than that of
EEMM and DIEMM for problem 2. It can be concluded that the
performance of EEMM is better than that of DIEMM, while the performance
of FIEMM is better than that of EEMM and DIEMM for problem 1. The order
of convergence of EEMM and DIEMM being approximately equal can be
associated with the absence of Drift function in problem 2. However,
FIEMM outperformed EEMM and DIEMM since its order of convergence
was less than that of EEMM and DIEMM for problem 2.
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The graphical solutions of each method were constructed for stepsize 27,
It can be observed that the graphical solutions of DIEMM and FIEMM are
almost the same for problem 1. Similarly, that of DIEMM and FIEMM is
almost the same too for problem 2. This confirms the statement credited
to Wang and Liu (2009) that there is no simple stochastic counterpart of
the Eular method; that is, the method fails because, for example

E|(L- ot —oow, )

=400 for a linear SDE in equation (3.1),

nevertheless, the treatment could be to look at a higher-order explicit
Strong method like the Milstein method and try to introduce implicitness
there (this is for future research).
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